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Local remeshing for large amplitude grid deformations
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Abstract

Fluid-structure interaction (FSI) modelling can involve large deformations in the fluid domain, which could lead to
degenerating mesh quality and numerical inaccuracies or instabilities, if allowed to amplify unchecked. Complete reme-
shing of the entire domain during the solution process is computationally expensive, and can require interpolation of solu-
tion variables between meshes. As an alternative, we investigate a local remeshing algorithm, with two emphases: (a) the
identification and remedy of flat, degenerate tetrahedra, and (b) the avoidance of node motion, and hence associated inter-
polation errors.

Initially, possible topological changes are examined using a dynamic programming algorithm to maximise the minimum
local element quality through edge reconnection. In the 3D situation it was found that reconnection improvements tend to
be limited to long edges, and those with few (three or four) element neighbours. The remaining degenerate elements are
classified into one of four types using three proposed metrics – the minimum edge-to-edge distance (EE), the minimum
node-to-edge distance (NE), and the shortest edge length (SE) – and removed according to the best manner for their type.
Optimised thresholds for identifying and classifying elements for removal were found to be EE < 0.18, NE < 0.21,
SE < 0.2.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The use of unstructured tetrahedral meshes in computational fluid dynamic (CFD) simulations allows easy
representation of arbitrary domain shapes [1], making these meshes attractive when modelling biological
flows. Tetrahedral meshes are also common in applications involving gross flow field deformations, especially
where the motion is not predictable a priori. The ability of tetrahedral elements to provide a geometric rep-
resentation does not automatically correlate to an arrangement acceptable for a computational simulation,
and mesh quality issues involving the size [2] and shape [3] of the elements used are an important aspect of
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CFD. Deterioration of quality is seen in locations where boundary motion occurs, reinforcing the importance
of resolving numerical accuracy in such regions, and also highlighting one of the challenges that modelling
these particular processes involves.

The motivation for this study stems from an attempt to model the fluid and solid dynamics of an aortic
dissection: a situation involving pulsatile fluid flow and the free motion of a thin membrane flap, both within
a tortuous and compliant vessel [4]. The large possible degree of motion of the flap effectively describes a
grossly deforming fluid region, at the same time as the solver requires congruent faces and nodes between
the fluid and solid domains.

The quality of an element is usually measured by defining an optimum shape, and measuring – in some
direction – the departure of the element from that shape [3,5,6]. Hence variations in the idea of a ‘good’ shape
and the rate at which quality deteriorates with shape give rise to different mesh quality measures. Most tra-
ditional mesh quality measures agree on what is good, and the equilateral tetrahedron is generally regarded
as the ideal shape, as it maximises the minimum internal angle (which is used indirectly in calculating fluid
fluxes).

Mesh quality measures are useful for locating degenerate elements within a mesh, but cannot generally
identify the features within each element that make it so. It is these features within the degenerate element that
must be fixed, and therefore must also be recognisable. In the meshing situation driving the current study, a
technique was required that would not only identify ‘bad’ elements, but also propose the best route towards
their repair or removal. For this to be possible, the measure must be able to differentiate between different
types of poor element shapes, even when their mesh quality measures are equal.

Fig. 1 shows isosurfaces of mesh quality for four common shape measures: the shape factor (SF), the nor-
malised shape ratio (NSR), QS [5], and the equi-angle skew (EAS). Also shown are the edge-to-edge distance
(EE) and the node-to-edge distance (NE) which will be introduced and discussed later. Definitions of these
measures given in Eqs. (1)–(6), and further shape measures for tetrahedra may be found in the works of Field
[5], and Knupp [6],
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where V is the tetrahedron volume, r is the inradius, R is the circumradius, and l is the edge length.
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where hideal for a tetrahedron is 1.2312 or 70.54�, and hmax and hmin are the maximum and minimum angles
between face planes.

The plots in the figure have been generated using an equilateral triangle as the base of a tetrahedron, per-
turbing the apex from the equilateral (in this case, ‘perfect’) location, then calculating and plotting the quality
according to each measure using isosurfaces. From the figure it can be seen that the near-spherical isosurfaces
of QS and SF are in fairly close agreement with one another, and likewise the EAS and NSR as regards
increases in the height of the tetrahedron. However, as the element is flattened and the apex moves towards
the basal plane, none of these measures is able to discern whether, for example, the apex node now lies near
one of the other edges (see Fig. 2(b), far from any edge (see Fig. 2(a), within the basal triangle (see Fig. 2(c), or
nearby to one of the other nodes (see Fig. 2(d). While each of these shapes is degenerate and requires removal,
the manner of removal that is optimal – or even possible – differs between cases, and depends on tetrahedron
shape. In order to identify these differences a further quantity is needed: this quantity must be able to be eval-
uated in the presence of degenerate elements, and must also provide information on the best manner of repair
of the element. In the following section we define four types of flat tetrahedral elements, and describe the
method of their repair.



Fig. 2. Examples of degenerate tetrahedra and their type classification, shown with a threshold edge length line dotted around selected
nodes. Note that Type IV is the only one in which a node falls within another’s circle, so is the only type eligible for removal via edge
splitting or edge collapse methods.

Fig. 1. Isosurfaces of quality measures for a tetrahedron with a fixed equilateral triangle base, with vertices at (200), (1
p

20), (000) and a
variable apex position. The measures plotted are (a) SF, (b) NSR, (c) QS, (d) EAS, (e) EE, and (f) NE.
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A survey of existing shape measures shows that the majority involve the circumradius (R), the inradius (r),
and/or tetrahedron volume (V) in some combination. As the apex of any tetrahedron moves nearer to the
plane of the opposite face, these terms become undefined and render the measure unable to distinguish
between any of the degenerating tetrahedra shown in Fig. 2. Many existing techniques for remeshing [7–
13], alter the mesh topology by comparing the local edge length to a predefined desired edge length, and split-
ting (or collapsing) edges that are too long (or too short). Mesh resolution (as measured by edge length) is then
able to be locally maintained despite gross and ongoing deformations of the geometry. With reference to the
elements in Fig. 2(a)–(c), we see that the degenerate elements do not meet the criterion for either edge splitting
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or collapse, as their edge lengths are fairly uniform. Elements such as these could perhaps be remedied through
reconnection. Other techniques, such as Delaunay meshing, can identify nodal configurations that do not con-
form to the Delaunay criteria and fix this aspect, but in 3D are prone to the formation of sliver elements [1],
and thus the Delaunay criteria does not provide adequate control over mesh quality, or inherent correlation
with numerically ‘good’ meshes.

Note that throughout this article the following connotations are used: topology refers to the connectivity
relationship between groups of nodes, to form a group of elements; geometry refers to the 3D spatial location
of nodes, faces and surfaces. Thus, stretching a mesh changes its geometry but not its topology, and for a given
geometry there are many topological arrangements possible.

2. Methods

2.1. Mesh quality measures

In general, we seek a strategy to measure, assess and remedy meshes involving flat and degenerate tetrahe-
dra, and more specifically we wish to avoid nodal displacement if possible. The movement of nodes outside of
an Arbitrary Lagrangian–Eulerian (ALE) [14] solver introduces errors during interpolation of solution vari-
ables between the old and new meshes. Laplacian or spring-based smoothing may improve the local mesh
quality, but these improvements must be weighed against the subsequent interpolation errors incurred.

We propose the following classification strategy, where typical examples of each class are shown in Fig. 2.
Four types of degenerate tetrahedra are identified, and their classification can be explained in terms of a fixed
basal triangle and a variable apex, positioned near to, or on, the basal plane. The element orientation and
shape of the basal triangle are obviously arbitrary, but in practice we have found this classification sufficiently
broad. We start by defining some simple geometric parameters for each element: the edge-to-edge distance
(EE), being the minimum distance between any two points on an unconnected edge pair, and the node-to-edge
distance (NE), being the minimum distance between any node and any edge unconnected to it. For two uncon-
nected edges, we can calculate the minimum edge-to-edge length as
EE ¼ min
js � ðe1 � e2Þj
je1 � e2j

� �
opposite edge pairs

ð5Þ
where the opposite edges are e1 and e2, and s is a line between the ends of each edge. For any line and node
that together define a face, the minimum node-to-edge distance is
NE ¼ min
je� ðe0 � xÞj

jej

� �
edges; nodes

ð6Þ
where the edge is given by e, the position of the opposite node is given by x, and e0 is one end of the edge.
Type I elements are characterised by a small EE formed by the crossing diagonal edges, a quadrilateral

footprint regardless of the choice of basal face, and a NE value near to the edge length. As the floating apex
node is moved nearer to the basal triangle, the NE value decreases. When NE is less than some fraction of the
average edge length, the element is labelled a Type II. Moving the apex still nearer produces an element whose
footprint changes from a quadrilateral (as in the Type I and II elements) to the triangular footprint of Type
III. The NE values of Type III elements are typically small, and because they have no crossed diagonal edges
the EE value becomes meaningless. When the apex lies close to one of the other nodes, a Type IV element is
formed. Although this element is degenerate, the short edge length meets the criteria for collapse, and would
be routinely removed. Type IV elements do not represent the unresolved degenerate element shape of the other
types, and are only included here for completeness.

2.2. Mesh reconnection routines

The most expensive component of mesh regeneration involves decisions about topology. Even for a small
group of nodes, the number of possible connectivity outcomes is typically too large to exhaust iteratively.
Fortunately, the topology changes can be broken down into subsets of simpler operations. For tetrahedral
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reconnection, Shewchuk noted that for the elements surrounding a single edge, the viable topological changes
can be reduced to a series of 2–3 flips, followed by a single 3–2 flip; each of these is defined below, and illustrated
in Fig. 3. A 2–3 flip is so called because it changes the connective topology of two elements to form three; a 3–2
flip is the reverse process. Such decomposition provides a means for generalising an optimisation code, so that
dynamic programming can be used to efficiently find the optimum configuration. [J.R. Shewchuk, Two discrete
optimization algorithms for the topological improvement of tetrahedral meshes, unpublished manuscript, avail-
able from <http://www.cs.cmu.edu/~jrs/jrspapers.html>].

There are times when even optimal reconnection cannot sufficiently repair a mesh, and nodal density and/or
nodal positions need to change. Two operations accomplish this: edge splitting (the addition of a node to the
midpoint of an edge, effectively doubling the number of elements in the original edge’s kernel), and edge col-
lapse (the deletion of a node through merging with a partner along an edge). These are illustrated in Figs. 4
and 5, and form the building blocks of the second part of the mesh improvement algorithm.

Although the operations described are general enough that they could – with some caveats – be applied
throughout a domain, we have chosen to prevent mesh alterations at boundaries and interfaces. Many soft-
ware packages involving FSI modelling require a congruent boundary between the faces and nodes at the
interface of the solid and fluid domains. Alterations of connectivity or nodal position in either domain would
violate this criterion, and are therefore forbidden.

2.3. Specialised reconnection routines

In a similar manner to the formulation of reconnection strategies from simpler operations, combinations of
edge collapse and splitting can be used to give operations that are optimised for the repair of specific types of
Fig. 3. The 2–3 reconnection operation, showing (a) the starting two elements, (b) the construction of a new edge between opposite
vertices, and (c) the final three element connectivity. The 3–2 flip is the reverse process.

Fig. 4. Edge splitting operation, showing (a) the original elements with a long edge to be split, and (b) a new node added at the midpoint of
the split edge, increasing the element count by the number of original element neighbours of the split edge.

http://www.cs.cmu.edu/~jrs/jrspapers.html


Fig. 5. Edge collapse operation, showing (a) the original short edge (arrowed) and its surrounding elements, and (b) the final connectivity
when the short edge has been collapsed, removing one node and all elements sharing the collapsed edge.

Table 1
Typical properties of the types of degenerate tetrahedra

Classification Type I Type II Type III Type IV

Minimum edge-to-edge distance Lim ? 0 Lim ? 0 (No crossed edges) Small
Minimum node-to-edge distance Large Small Small Small
Minimum node-to-face distance n/a n/a Lim ? 0 n/a
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element configurations. After using the element classification to identify the type of element, the appropriate
combination can then be prescribed.

Table 1 summarises the typical parameters of each type of degenerate element. From the table and the illus-
trations in Fig. 2, it can be seen that some elements could fall into more than one category; having, for exam-
ple, a small NE (indicating Type II) but a triangular footprint (indicating Type III). In practice, the priority
order of classification is IV, II, III, I; the reasons becoming clear when the manner of removal of each is
examined.

Type I tetrahedra are characterised by a quadrilateral footprint, and have crossed diagonals which
approach intersection as the element approaches planarity. These elements are not usually removed by recon-
nection, as the tests for reconnection involve a single edge, not the two edges found in this type of element.
Fig. 6 shows the repair of a Type I element. Both diagonal edges are broken – either at their midpoint, or
Fig. 6. Repair of a Type I element, showing (a) the original configuration, with the degenerate element shown in the middle, (b) the
diagonal edges of the degenerate element are split, creating two transient points, and (c) the edge between the two transient points formed
in (b) is collapsed, removing all children of the original degenerate element.
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at the location nearest to the other edge – forming two new nodes. The edge connecting these two nodes is then
collapsed, leaving only one new node in approximately the centre of the collection of affected elements. The
accuracy of any interpolation onto the newly created node can be controlled by constraining the final node
position to coincide with the midpoint of one of the original diagonal edges. Hence the interpolation is along
an edge to its midpoint, rather than to an arbitrary point in space. The decision to improve interpolation must
be weighed against the possible penalty incurred in the resultant mesh quality by breaking at the midpoints as
opposed to the intersection point. In practice, we found that the better mesh quality occurred most often by
breaking both edges at their midpoint, rather than the point nearest intersection.

The configuration (and hence the remedy) of Type II elements is similar to Type I. If an element with a
small NE were broken (as for a Type I) at the intersection of its diagonals, the resultant elements would have
faces with unacceptably small angles (shown in Fig. 7), producing child elements of low quality. Instead, the
Type II element is repaired by breaking the edge involved in the smallest NE measurement to form a new tran-
sient point, and then collapsing the edge between the transient point and the node opposite. After collapse, the
new location of the node becomes that of the transient point, and lies along a previously existing edge.

As mentioned earlier, there is a certain degree of overlap between the classifications. This is especially true
in Type III elements, which tend to fall into shared categories of Type IV (having one short edge), or Type II
(having a small NE distance). Once again, the strategy employed must account for the final configuration after
repair. Because the shape of the faces other than the basal face is generally poor, the best general option for an
uniquely classified Type III element is to locate the shortest edge connected to the apex, and collapse it
towards the basal node position; effectively removing all elements sharing the poor faces, and leaving only
the basal face remaining in the mesh (see Fig. 8). This is the method implemented during this study, and
was found to be sufficient in our test cases. Finally, those elements classified as Type IV are removed by
the simple collapse of their shortest edge (shown earlier in Fig. 5), with the remaining node placed at the mid-
point of the old edge.

2.4. Mesh motion routines

Most FSI solvers require a face-to-face matching between the solid and fluid mesh domains. In the appli-
cations considered here, the fluid domain undergoes significantly more deformation than the solid domain,
and so the solid domain topology is held constant and only the fluid domain is remeshed. Initially, the fluid
mesh was deformed within the solution timestep by a pseudo-elastic solver, which treats the fluid domain as a
Fig. 7. Repair of a Type II element, showing (a) the original configuration, with the degenerate element in the middle, (b) splitting the edge
nearest to an opposite node, and (c) the short edge formed by the split in (b) between the new point and the nearest node is collapsed,
removing all children of the degenerate middle element, as well as children of others sharing the face formed between the original edge and
nearest node.



Fig. 8. Repair of a Type III element, showing (a) the original connectivity with the flat element in the middle, (b) the collapse of the
shortest edge on the flat element connected to the apex (arrowed), and (c) the final elements formed.
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hyper-elastic solid with Poisson’s ratio of zero, and solves for the mesh deformation. As expected, the fluid
regions nearest to the deforming solid undergo the most deformation, and usually yield the worst final mesh
quality. To circumvent this problem, we have imposed restrictions on the system whereby a defined region of
mesh near to any boundary is held rigid during mesh motion, and therefore undergoes minimal distortion.
Using this method ensures that the elements near to the boundaries (where remeshing is forbidden, and quality
is most critical) maintain a high quality, and those elements that undergo greatest deformation are moved into
the volume mesh, where they may be operated upon by the reconnection and remeshing algorithms described
earlier.

3. Results and discussion

3.1. Test cases

Initially, simple test cases were used to assess the viability of the dynamic remeshing algorithm. A FSI sim-
ulation of two rectangular channels separated by a flexible membrane was run using the pseudo-elasticity rou-
tine for grid deformation until it failed owing to poor element quality. Because that routine only alters nodal
position, the ‘failed’ and ‘original’ meshes provided the extrema of quality for the given topology. Meshes of
intermediate quality were then artificially created by linearly interpolating node positions between the ‘failed’
and ‘original’ meshes, thus providing a range of initial quality in these test cases.

The reconnection algorithm was set to maximise EAS, and the mesh was swept by inspecting only those
elements below a starting threshold, then successively raising the threshold until no further improvements were
possible. Elements with quality lower than the threshold were plotted before and after reconnection at each
increment, and shown for the stretched membrane test case (Fig. 9). During compression, reconnection
removed 100%, 93%, 73% and 37% of elements, and during stretching reconnection removed 100%, 95%,
90% and 60% of elements below the EAS thresholds of 0.1, 0.2, 0.3, 0.4. Obviously as the threshold is raised,
the number of elements falling below it increases, and the possibility for improvement by reconnection alone
diminishes.

The reconnection algorithm alters mesh topology only when the minimum element quality increased. Thus,
although no degradation in minimum quality is seen, negligible improvements may have induced a totally new
local connectivity; and this new configuration may have lowered an individual element quality in order to
increase the local minimum. Fig. 10 shows the effect of reconnection on local mesh quality, from which the



Fig. 9. Effect of reconnection on the element quality, applied to the stretched test case 1. The upper row is before reconnection, the lower
row is afterwards. From left to right (a) EAS < 0.1, 100% (1/1) removed, (b) EAS < 0.2, 95% (170/179) removed (c) EAS < 0.3, 90% (1600/
1781) removed, and (d) EAS < 0.4, 60% (2176/3635) removed.
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effect of applying a minimum improvement condition on the algorithm can be deduced. It can be seen that
local reconnection can result in significant improvement, but also that much of the improvement was below
DEAS = 0.1. Comparing the number of edges meeting the criteria for reconnection to the improvement given,
we found that setting a minimum improvement threshold of DEAS = 0.2 would halve the number of recon-
nections performed. Though the incorporation of such a threshold into the routine could reduce overall com-
putational time, the most computationally intensive part of the routine is in the calculation of mesh quality
itself, and hence the efficiency improvements are more likely to scale with the number of possible reconnec-
tions tested, rather than the total number performed.

It is possible to estimate the typical starting topology for which reconnection can give the greatest improve-
ment from Fig. 10. The algorithm tested reconnections of edges with up to eight neighbouring elements, and
found that improvements tended to occur more frequently on the edges with fewer (three or four) neighbours.
However, this observation needs to include a caveat regarding element shape: when a group of elements is
stretched along its common edge axis, the advantages of removing that axis via reconnection increase, and
the opposite as an edge is compressed. The reconnection routine can be thought of as a method of removing
the central edge, and replacing it with edges diagonal to its satellite nodes. In this case, the advantages of
reconnection become apparent when the edge to be removed is too long, and the diagonals it forms are nearer
to the required length. Obviously, when the central edge is too short, reconnection about that edge cannot help
the problem, and a new central edge must be chosen. Heuristically restricting the reconnection search to edges
more likely to provide improvement (for example, edges with three or four neighbours only) could improve



Fig. 10. The effect of reconnection on mesh quality, as influenced by the number of original element neighbours of the reconnected edge.
The solid horizontal line represents the lower limit of acceptable mesh quality, points above the dashed line have improved in quality, and
above the dotted line have a quality improvement greater than 0.2.
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computational efficiency significantly, as it avoids the expensive tests for determination of reconnected element
quality. This must be weighed against the need for the remaining mesh elements to be altered via subsequent
operations instead.

The observation made above that three-neighboured edges give the best (that is, the highest and most con-
sistent) improvement upon reconnection can be explained as follows. In order for three elements to completely
enclose an edge, the angle that is formed between faces on that edge must be obtuse. Hence, the 3–2 flip on
that edge replaces the three obtuse tetrahedra with two that must be (see Fig. 3) acute, can dramatically
improve the EAS measure for that element kernel. In the 2–3 and 3–2 flips performed on a four-(or more)-
neighboured edge, the same reasoning does not necessarily apply, and locally specific improvements (that
depend on node placement, or edge length) are manifest instead.

To assess the applicability of the routine on a simple test case, a mesh of a translating sphere in a square
duct was created, and the mesh deformed. The algorithm was able to remedy the mesh as the sphere moved,
giving a mesh free from degenerate elements and of a quality acceptable for fluid solution. These results are
shown in Fig. 11. If this mesh had been used for a FSI simulation, the degenerating mesh quality (from as early
as the first timestep) would have caused unacceptably high levels of numerical error in the solution, though the
solver may not necessarily stop. From the figure it can be seen that the areas of lowest quality are near to the
fluid-structure interface, highlighting the particular importance of mesh quality checks in fluid-structure or
moving mesh applications, as the area of greatest interest is also the most prone to mesh induced errors. In
this example the timestep is greater than that which would be used for a FSI simulation, but the fact that
degenerate elements appear almost immediately indicates that total domain remeshing (as opposed to local)



Fig. 11. Remeshing results for a translating sphere in a square duct, showing (a) no remeshing, (b) degenerate elements without remeshing,
and (c) including remeshing, no degenerate elements.
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would significantly increase the computational cost of the simulation, quite apart from the old-to-new solution
interpolation issues that arise.

3.2. Degenerate element removal

To most effectively classify elements for removal, the interaction between their defining parameters and the
removal method needs to be more fully understood. In contrast to traditional smoothing methods where a
badly shaped element remains (albeit with higher quality) in the mesh, the complete removal of a degenerate
element means that final mesh quality depends on the surrounding elements, rather than on the degenerate
element itself. It makes sense that the limiting parameters set should be those that maximise the final mesh
quality, and are (perhaps) independent of the element to be removed.

To investigate the relationship of the control parameters (NE, EE, SE and minimum shape quality), we per-
formed a test using an unstructured tetrahedral mesh of a cube, which was distorted to create three lower qual-
ity meshes with distinctive element types. The distortions used were extension (z0 = 3z), compression (z0 = z/3),



Table 2
Element removal type giving optimal local mesh quality for distorted cube meshes

Element type I II IV

All meshes 243 12 77
Compressed 75 1 0
Stretched 72 1 33
Sheared 96 10 44

The original mesh had 6797 tetrahedra and 1576 nodes.
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and shearing (z0 = 1.5y). Each element with EAS < 0.2 was removed by one of the three methods listed in
Table 1 in turn, regardless of its true classification and the possible reduction in final mesh quality. The results
were plotted against the control parameters to find a relationship between the optimal final mesh, the original
element type, and the parameters that correctly define that type. The numbers of degenerate elements that
were successfully (that is, in a manner that benefited the final mesh) removed by each method are shown in
Table 2. It would seem that the removal method for Type I is the most robust, giving the greatest consistency
in improvement between all the removal methods.

A weighting system was used to optimise the EE, NE and SE thresholds used. The ideal quality is given by
the operation that was found to increase the local mesh quality the most. In some cases, removing the element
resulted in a decrease in mesh quality; in these situations the ideal quality became the uncorrected mesh qual-
ity. Weighting factors equal to the difference between this measured ideal quality and the final quality follow-
ing element removal (as classified by the thresholds) were applied, and the sum of these penalty weights was
minimised. Elements that were correctly identified and removed incurred no penalty. This minimisation pro-
cedure gave optimised thresholds of
EE < 0:18;Type I

NE < 0:21;Type II

EAS < 0:2;NF real;Type III

SE < 0:2;Type IV
for a total of 525 elements removed from the three box meshes. These thresholds when applied to all test cases
successfully removed all degenerate elements.

4. Conclusions

We have presented two metrics for mesh quality (the minimum edge to edge distance, EE, and the minimum
node to edge distance, NE) and demonstrated their use in the classification and removal of degenerate tetra-
hedral elements. These metrics are needed because traditional quality measures involve properties (such as the
circumradius, the inradius, and the volume) that become undefined as the element approaches planarity. Four
types of degenerate tetrahedral configurations were defined, and their remedy described in terms of combina-
tions of the simple edge splitting and edge collapse operations found in other existing algorithms. Elements are
removed when their minimum edge-to-edge distance EE < 0.18 of the average edge length, when their node-to-
edge distance NE < 0.21 of the average edge length, and when the shortest edge length SE < 0.2 of the average
edge length.

We have also implemented a dynamic programming algorithm to investigate reconnection, showing that
reconnection can be used to give dramatic increases in element quality without node repositioning. Edges with
three element neighbours gave the most dramatic improvement, which decreased for edges with more element
neighbours. No improvement through reconnection was seen for edges with more than five neighbours. In
areas where reconnection improvement was not possible, edge splitting or edge collapsing routines were used
to provide the correct node density, again without node motion. Finally, degenerate tetrahedra were success-
fully removed according to the criteria above, to provide meshes that have an acceptably high quality while
minimising node motion.
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